Diameter?free estimates for the quadratic Vinogradov mean value theorem

نویسندگان

چکیده

Let s ? 3 $s \geqslant 3$ be a natural number, let ? ( x ) $\psi (x)$ polynomial with real coefficients and degree d 2 $d 2$ , A $A$ some large, non-empty, finite subset of numbers. We use E $E_{s,2}(A)$ to denote the number solutions system equations ? i = 1 ? + 0 \begin{equation*}\hskip2.5pc \sum _{i=1}^{s} (\psi (x_i) - \psi (x_{i+s}) )= (x_i x_{i+s} 0, \end{equation*} where ? $x_i \in A$ for each ? $1 \leqslant 2s$ . Our main result shows that ? | ? \begin{equation*}\hskip6pc E_{s,2}(A) \ll _{d,s} |A|^{2s -3 \eta _{s}}, / $\eta _3 1/2$ 4 7246 · _{s} (1/4- 1/7246)\cdot 2^{-s 4}$ when 4$ The only other previously known this flavour is due Bourgain Demeter, who showed (x) x^2$ $s=3$ we have ? E_{3,2}(A) _{\epsilon } |A|^{3 1/2 \epsilon }, > $\epsilon 0$ Thus, our improves upon above estimate, while also generalising it larger values $s$ more wide-ranging choices novelty estimates they depend on $d$ $|A|$ are independent diameter sparse set, results stronger than corresponding bounds provided by methods such as decoupling efficient congruencing. Consequently, strategy differs from these two lines approach, employ techniques incidence geometry, arithmetic combinatorics analytic theory. Amongst applications, lead discrete restriction sequences.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The First Mean Value Theorem for Integrals

For simplicity, we use the following convention: X is a non empty set, S is a σ-field of subsets of X, M is a σ-measure on S, f , g are partial functions from X to R, and E is an element of S. One can prove the following three propositions: (1) If for every element x of X such that x ∈ dom f holds f(x) ≤ g(x), then g − f is non-negative. (2) For every set Y and for every partial function f from...

متن کامل

A mean value theorem for the square of class number times regulator of quadratic extensions

Let k be a number field. In this paper, we give a formula for the mean value of the square of class number times regulator for certain families of quadratic extensions of k characterized by finitely many local conditions. We approach this by using the theory of the zeta function associated with the space of pairs of quaternion algebras. We also prove an asymptotic formula of the correlation coe...

متن کامل

A Mean Value Theorem for the Square of Class Numbers of Quadratic Fields

Let k be a number field. In this paper, we give a formula for the mean value of the square of class numbers times regulators for certain families of quadratic extensions of k characterized by finitely many local conditions. We approach this by using the theory of the zeta function associated with the space of pair of quaternion algebras.

متن کامل

The Mean Value Theorem and Its Consequences

The point (M,f(M)) is called an absolute maximum of f if f(x) ≤ f(M) for every x in the domain of f . The point (m, f(m)) is called an absolute minimum of f if f(x) ≥ f(m) for every x in the domain of f . More than one absolute maximum or minimum may exist. For example, if f(x) = |x| for x ∈ [−1, 1] then f(x) ≤ 1 and there are absolute maxima at (1, 1) and at (−1, 1), but only one absolute mini...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of The London Mathematical Society

سال: 2022

ISSN: ['1460-244X', '0024-6115', '1234-5678']

DOI: https://doi.org/10.1112/plms.12489